A Forward Approach to Numerical Data Assimilation
نویسندگان
چکیده
منابع مشابه
A Forward Approach to Numerical Data Assimilation
Variational data assimilation problems are concerned with computing unknown initial values for the simulation and prediction of natural phenomena, most notably in weather prediction, and are usually solved via an ill-posed optimal control problem for the initial state at the time of the first available measurements. An alternative “forward” approach focuses on computation of the final state aft...
متن کاملA Forward Sensitivity Approach to Lagrangian Data Assimilation
The main goal is to show that the FSM is appropriate for assimilating Lagrangian data into non-linear models. Lagrangian instruments are a popular tool for providing measurements of fluid dynamics and transport properties. The dynamics of the ocean processes that ”create” the Lagrangian data collected by ocean drifters are often modeled as highly non-linear processes. This nonlinearity leads to...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولA Data Assimilation Approach to Coefficient Identification
The thermal conductivity properties of a material can be determined experimentally by using temperature measurements taken at specified locations inside the material. We examine a situation where the properties of a (previously known) material changed locally. Mathematically we aim to find the coefficient k(x) in the stationary heat equation (kTx)x = 0; under the assumption that the function k(...
متن کاملA Bayesian Approach to Data Assimilation
Data assimilation is formulated in a Bayesian context. This leads to a sampling problem in the space of continuous time paths. By writing down a density in path space, and conditioning on observations, it is possible to define a range of Markov Chain Monte Carlo (MCMC) methods which sample from the desired distribution in path space, and thereby solve the data assimilation problem. The basic bu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2009
ISSN: 1064-8275,1095-7197
DOI: 10.1137/090746240